Categories: Επιστήμη

Το παράδοξο των γενεθλίων και πόσο κακοί είμαστε στην εκτίμηση του ρίσκου

Μόλις κάθισαν οι φοιτητές στις θέσεις τους, ο καθηγητής ρώτησε: “Ποιος θέλει να στοιχηματίσει μαζί μου 5 ευρώ ότι δύο άτομα σε αυτό το αμφιθέατρο, έχουν γενέθλια  την ίδια ημέρα;”

Οι φοιτητές κοιτάχτηκαν μεταξύ τους. Συνυπολογίζοντας και τον καθηγητή, υπήρχαν 66 άτομα στο αμφιθέατρο.  Οπότε, ενώ ο χρόνος έχει 365 ημέρες, στο αμφιθέατρο υπήρχαν μόνο 66 άτομα, Άρα οι πιθανότητες ήταν με το μέρος τους, σκέφτηκαν οι φοιτητές.

Ένα φοιτητής σήκωσε το χέρι και αποδέχτηκε το στοίχημα. Ο καθηγητής ζήτησε από όσους κάθονταν στην πίσω σειρά να αρχίσουν να φωνάζουν ένας-ένας, την ημέρα των γενεθλίων τους. Και ενώ μόλις 6 άτομα είχαν προλάβει να φωνάξουν την ημερομηνία γενεθλίων, κάποιος από την μέση του αμφιθέατρου αναφώνησε «Αυτή είναι η ημερομηνία και των δικών μου γενεθλίων”. Οπότε Ο καθηγητής κέρδισε τα 5 ευρώ.

“Θέλει κανείς άλλος να στοιχηματίσει μαζί μου;” ρώτησε.

Ένας άλλος φοιτητής σήκωσε το χέρι, υπολογίζοντας ότι οι πιθανότητες να κερδίσει είναι ακόμα μεγαλύτερες, αφού είχαν μειωθεί πια και οι πιθανότητες της τυχαίας και συμπτωματικής νίκης.

Η διαδικασία επαναλήφθηκε. Αυτή την φορά δεν μετείχε ο φοιτητής που βρέθηκε πριν να έχει ίδια ημερομηνία γενεθλίων με κάποιον άλλο. Χρειάστηκαν πάλι μόνο λίγα άτομα να φωνάξουν την ημερομηνία των γενεθλίων τους, πριν βρεθεί κάποιος άλλος φοιτητής με την ίδια ημερομηνία γενεθλίων. Ο καθηγητής κέρδισε άλλα 5 ευρώ.

«Κάποιος άλλος;” ρώτησε ο καθηγητής.

Ένας άλλος ‘γενναίος’ φοιτητής δέχτηκε το στοίχημα, αλλά και αυτός έχασε τα 5 ευρώ.

“Άλλος;”

Αυτή τη φορά οι φοιτητές ήταν διστακτικοί. Όμως μετά από λίγο σήκωσε το χέρι μου ακόμα ένας. “Τι στο καλό;” σκέφτηκε. “Για πόσο ακόμα θα είναι τυχερός ο καθηγητής;” Όμως μετά από λίγο, διαπίστωσε ότι έχασε και αυτός το στοίχημα.


Κανείς άλλος φοιτητής δεν δέχτηκε να στοιχηματίσει με τον καθηγητή …

Ο καθηγητής εξήγησε στους φοιτητές ότι αυτό το στοίχημα που έβαλε ήταν πολύ ασφαλές για τον ίδιο, παρόλο που αυτοί θεωρούσαν ότι ήταν ριψοκίνδυνο. Οι φοιτητές είχαν εκτιμήσει πολύ λάθος τις πιθανότητες επιτυχίας και αποτυχίας.

Στην πραγματικότητα, οι πιθανότητες του καθηγητή να κερδίσει το στοίχημα ήταν πάνω από 99% (!). Οι πιθανότητες θα παρέμειναν συντριπτικά υπέρ του μέχρι  τα συνολικά άτομα να μειωθούν σε 23. Σε αυτό το σημείο οι πιθανότητες θα ήταν 50/50. Αυτό φαίνεται και στο παρακάτω γράφημα που δείχνει την πιθανότητα ανάλογα με τον αριθμό των ατόμων.

 

Το μάθημα που πρέπει να πάρουμε από την παραπάνω ιστορία είναι το εξής:

Η εκτίμηση των πιθανοτήτων δεν πρέπει να γίνεται με βάση την διαίσθηση. Αν χρειαστεί να πάρετε μια σημαντική απόφαση που απαιτεί εκτίμηση ρίσκου, μην ακούσετε το ένστικτο σας. Πολλές φορές θα αποδειχτεί λάθος (και κάποιες φορές πολύ λάθος).  Αναλύστε τα δεδομένα, μελετήστε τα νούμερα, συμβουλευτείτε έναν ειδικό – αν χρειάζεται.

 

___

Πως υπολογίζουμε την πιθανότητα

Άν η πιθανότητα εύρεσης δύο ατόμων που έχουν την ίδια μέρα γενέθλια σε μια ομάδα 23 ατόμων είναι P(A) είναι πιο εύκολο να υπολογίσουμε την αντίστροφη πιθανότητα P(A‘) να μην υπάρχουν, δηλαδή, δύο άτομα που να έχουν την ίδια μέρα γενέθλια. Καθώς ειναι αντίστροφες ισχύει P(A‘) = 1 − P(A).

Όταν δύο γεγονότα είναι ανεξάρτητα το ένα από το άλλο τότε η πιθανότητα να ισχύουν είναι το γινόμενων των διαφορετικών πιθανοτήτων. Επομένως η πιθανότητα P(A‘) για 23 άτομα είναι P(1) × P(2) × P(3) × … × P(23).

Για ένα άτομο η πιθανότητα είναι 365/365=1 δηλαδή 100%. Για το δεύτερο άτομο η πιθανότητα να μην έχει ίδια ημέρα γενέθλια με το πρώτο είναι 364/365. Για το τρίτο άτομο είναι 363/365.

Συνεχίζοντας την ανάλυση βρίσκουμε ότι:

P(A‘) = 365/365 × 364/365 × 363/365 × 362/365 × … × 343/365

από αυτό συνεπάγεται ότι:

P(A‘) = 0.49270276

επομένως:

P(A) = 1 − 0.49270276 = 0.507297 (50.7297%)

Γενικά για ν αριθμό ατόμων έχουμε:

ν (αριθμός ατόμων) p(ν) – πιθανότητα
10 11.7%
20 41.1%
23 50.7%
30 70.6%
50 97.0%
57 99.0%
100 99.99997%

____

by Αντικλείδι , https://antikleidi.com

Συναφές: 

Γρίφος: Η λογική του φαλακρού

Το παράδοξο του Αχιλλέα και της χελώνας

Το λογικό παράδοξο του Επιμενίδη

Το παράδοξο με τα καλικατζαράκια

“Τα πάντα εξισορροπούνται” ή “Η τύχη δεν έχει μνήμη” 

Ο Σέξτος Εμπειρικός και η ατέρμονη παλινδρόμηση της δικαιολόγησης

Αντικλείδι

Οι διαχειριστές του blog

Share
Published by
Αντικλείδι

Recent Posts

John Locke – Δοκίμιο για την ανθρώπινη νόηση : Το βέβαιο και το πιθανό.

Αντιμετωπίζοντας τους θρησκευτικούς και πολιτικούς φανατισμούς, ο John Locke θέλει να δείξει ότι οι βεβαιότητες…

3 weeks ago

Η Τέχνη της Ευτυχίας: Ένα ταξίδι με οδηγό την αρχαία φιλοσοφία

Θα ξεκινήσω με εκείνη τη διάσημη, ειλικρινά ενοχλητική, σωκρατική μέθοδο: με μια ερώτηση. Ποιος από…

4 weeks ago

Φωτεινά Εργαλεία με σκοτεινές χρήσεις: Τα κοινά γνωσιακά υλικά της Επιστημονικής και της Συνωμοσιολογικής Σκέψης και το παράδειγμα της Νομπελίτιδας

Μετά από χιλιάδες χρόνια διανοητικού μόχθου, φαίνεται ότι ξαναγυρίζουμε ταπεινά στον Σωκράτη. Αφού κυνηγήσαμε τις…

1 month ago

Aρχαίος Σκεπτικισμός: Όταν τίποτε δεν ενοχλεί

Τι είναι αλήθεια και πώς μπορούμε να τη γνωρίσουμε; (more…)

2 months ago

Π. Ιακωβής – Ένα Πράσινο Αυτοκίνητο: Η Ασυμμετρία της Άρνησης και η Οντολογία του Όχι

Ας υποθέσουμε μια Πρόταση Α: (Αυτό το αυτοκίνητο είναι Πράσινο) και την Άρνησή της, Πρόταση…

2 months ago

Επίκουρος και ασυνείδητο: Από την αρχαία φιλοσοφία στη σύγχρονη νευροεπιστήμη και ψυχοθεραπεία.

Αφορμή για αυτή την εργασία υπήρξαν δύο λόγοι: 1. To ενδιαφέρον μου για την Επικούρεια…

3 months ago